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In 1975-1980, W. Cegla and A. Z. Jadczyk studied the causality structure of 
space-time: two points of Minkowski space-time M are causally independent iff 
they are different and spacelike or lightlike separated, and the measurable causally 
closed subsets of M form an orthomodular lattice. We show that this lattice 
enables us to model, by a formalism close to the one of orthodox quantum 
mechanics, a definite experiment in relativistic non-quantum mechanics: the 
counting of identical point bodies by one or several radars in some particular 
regions of the space-time. 

The orthomodular lattice considered in this paper has been known for 
a long time. Our aim is to show that it may be used to model a precise 
experiment in relativistic non-quantum mechanics, in a way closely related 
to the logicoalgebraic approach to quantum mechanics. 

1. PREVIOUS RESULTS 

From 1975-1980, W. Cegla and A. Z. Jadczyk of the Institute of Theoret- 
ical Physics, Wroclaw, studied the causal logic of Minkowski space-time 
(Cegla and Jadczyk, 1977, 1979; Cegla, 1981). Their results were used in a 
paper by Banal (1985). 

1.1. Some Definitions 

Minkowski space-time M is an affine space over the vector space R 4 
equipped with the Minkowski quadratic form Q defined by 

Q(x, y, z, t) : x 2 -[- y2 + Z 2 __ t2 
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where the light velocity is c = 1. 

Two points u, v in M are: 

�9 Spacelike (resp. timelike, lightlike) separated if Q(u - v) > 0 [resp. 
Q(u - v) < O, Q(u - v) = 0]. 

�9 Causally independent (Cegla and Jadczyk) if they are different and 
spacelike or lightlike separated. 

A space- or light-like hypersurface is a (maximal) hypersurface S in M, 
any two points of which are spacelike or lightlike separated. 

1.2. Some Results by Cegla and Jadczyk 

The relation of causal independence is an orthogonality relation, denoted 
by _1_. If we define, as usual, for any subset A of M, 

A • = {u E M : V v  e A ,  u_l_ v} 

then the set L of all subsets A of M such that A = A •177 ordered by inclusion 
and equipped with the unary operation by which each A is associated A -L, is 
a complete orthomodular lattice. 

If A is a Borel subset of M, then A • is a Borel set, too, and the set L8 
of all Borel sets in L is a (r-complete subortholattice of L. Both L and LB 
are atomic and do not satisfy the covering law. 

In both cases (L and LB), there is a one-to-one correspondence between 
blocks and space- or light-like hypersurfaces: atoms of a block are one- 
element subsets of the associated hypersurface. 

Cegla and Jadczyk (1979) showed that a smooth conserved current on 
M, of compact support, defines a tr-additive state on LB. 

2. FINITE-VALUED STATES ON Ln 

We define a universe line as any possible trajectory in M of a classical 
massive particle. We make the assumption that such a line C is characterized 
as follows: 

(a) Any two different points of C are timelike separated (this means 
that, in any interval of time, the mean velocity of the particle is < c). 

(b) C intersects every space- or light-like hypersurface (since the future 
light cone of any point of M is a space- or light-like hypersurface, this exclude 
the case of a particle accelerated in such a way that it cannot be reached by 
a light ray). 

Proposition 1. There is a one-to-one correspondence between two-valued 
~y-additive states on L8 (or on L) and universe lines. The two-valued state s 
associated with such a line C is defined, for any A in LB, by 
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s(A) = 1 if CintersectsA 

= 0 otherwise 

Moreover, this result can be extended to n-valued states s such that s(a) <- 
l/n for any atom a, and n-uples of disjoint universe lines. 

The above results suggest that LB enables us to model the counting of 
identical particles in certain regions of M, the regions belonging to LB. 

Now, a first question arises: regions in LB are of very particular shapes; 
is there a physical reason for this? 

3. W H Y  T H E S E  S H A P E S ?  

Let us imagine a counter scanning identical particles crossing over a 
Borel region R in M, called its range. We observe two facts: 

1. It is necessary to avoid the situation described in Fig. 1, where xyz, 
x'y'z', xyy'z' are universe lines. Indeed, in this case, the counter detects 
particles crossing its range R following arcs xy and y'z', but the observer 
cannot know if there is one particle going along the universe line xyy'z' or 
two different particles following respectively xyz and x'y'z', and so is not 
able to count the particles. 

2. Let T(R) be the set of all u in space-time M such that any universe 
line containing u intersects R. 

y' 

X' 

Fig. 1. 
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Then T is a closure operator; in particular, R is contained in T(R), and 
the counter detects all particles crossing over T(R), since the same particles 
cross over R and over T(R). 

T(R) is called the full range of the counter. 

Proposition 2. Condition 1 is satisfied if and only if the full range of 
the counter belongs to LB. 

This proves that this counter is able to count only if its full range is in 
LB. However, this condition is not sufficient to be sure that the counting of 
particles crossing R is possible, because it can happen that the intersection 
with R of the trajectory in M of a particle is a nonconnected set. 

For any subset A of M, let us denote by S(A) the set of all u in M such 
that there exists a universe line containing u and meeting A in both the past 
and the future of u. 

Proposition 3. The mapping S is a closure operation such that, for any 
Borel subset A of M, S(A) is a Borel set, and for any A in L, S(A) = A. 
Moreover, for any subset A of M, TS(A) = A l=. 

This shows that if the range R of the counter is such that R = S(R), 
then T(R) = R •177 hence condition 1 is satisfied; moreover the intersection 
with R of any universe line is connected, hence the counter is able to work. 

Remark. In the characterization of a universe line we have not supposed 
[see condition (a), Section 2], as usual, that a massive particle has at each 
time a velocity v < c. If the definition of a universe line is modified in 
this way, Propositions 2 and 3 remain true; the main consequence of this 
modification is that some ~-additive two-valued states are not associated 
with a universe line in this new sense. 

4. T H E  C O U N T E R  

A counter satisfying the above conditions is actually well known, but 
its range is very large and it detects only extended bodies: it is radar. 

Let us consider a radar acting as transmitter-receiver in all directions, 
moving in a large interstellar space, during an interval of time. Its purpose 
is to detect and to count identical bodies crossing its range. These bodies 
and the radar are very small in relation to its range, and so they may be 
considered as points. The radar is supposed to be powerful enough to detect 
each body to which the radio waves can go and return while it works. 

Proposition 4. The range of this radar is full and belongs to LB. It is 
the least upper bound in LB of two atoms {u} and {v} of LB, where u, v are, 
respectively, the initial and final positions of the radar in the space-time. 
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Moreover, it is possible to use, as a counter, several radars, some of 
them acting as transmitters, and the others as receivers, some additional 
requirements being necessary in order to satisfy above condition R = S(R). 
This allows us to obtain various shapes for the full range of the counter. 

In particular, if each radar works during an interval of  time, condition 
R = S(R) is satisfied in the following circumstances. 

Let us denote by T a T' the relation between receivers T and T', meaning 
that, while working, T sends to T' a radio message that T' receives while 
working; then the transitive relation generated by a on the set of all receivers 
is a universal one (that is to say, this relation holds for any two different 
receivers); moreover, the same is true for transmitters. 
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